01.
1+1/4+1/9+1/16+1/25+1/36+...的和1/1*1+1/2*2+1/3*3+1/4*4+1/5*5+1/6*6+...1+1/2*1/2+1/3*1/3+...答:1/n(n+1)*2n+1/6*2...查看完整版>>
1+1/4+1/9+1/16+1/25+1/36+...的和
02.
求1+1/4+1/9+1/16+1/25+...... 的和1+1/4+1/9+1/16+1/25+...... +1/(N的平方)=1/1+1/4+1/9+1/16+1/25+...... +1/(N的平方)1/1+1/4=5/41+1/4+1/9=49/361+1/4+1/9+1/16=205/1441+1/4+1/9+1/16+1/25=5269/36001+1/4+1/9+1/16+1/25+1/36=5369/3600时间紧,...查看完整版>>
求1+1/4+1/9+1/16+1/25+...... 的和
03.
1+1/2+1/4+1/8+1/16+1/32+1/64+1/128等比数列的前8项和.用前N项和公式[1-(1/2)的8次方]/(1/2)=255/256...查看完整版>>
1+1/2+1/4+1/8+1/16+1/32+1/64+1/128
04.
(2^1+1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)(2^32+1)(2^64+1)等于多少?思路:在原式乘上(2-1),不断的产生平方差,可以巧解。 (2^1+1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)(2^32+1)(2^64+1) 解: 原式=(2-1)(2^1+1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)(2^32+1)(2^64+1) =(2^2-1)(2^2+1)(2^4+1)(2^...查看完整版>>
(2^1+1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)(2^32+1)(2^64+1)等于多少?
05.
计算:(2^1+1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)(2^32+1)(2^64+1)思路:在原式乘上(2-1),不断的产生平方差,可以巧解。(2^1+1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)(2^32+1)(2^64+1)解:原式=(2-1)(2^1+1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)(2^32+1)(2^64+1)=(2^2-1)(2^2+1)(2^4+1)(2^8+1)...查看完整版>>
计算:(2^1+1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)(2^32+1)(2^64+1)
06.
计算:(2+1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)(2+1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)=(2-1)(2+1)(2^2+1)...(2^16+1)=(2^2-1)(2^2+1)...(2^16+1) =... =(2^16-1)(2^16+1) =2^32-1 =2^64...查看完整版>>
计算:(2+1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)
07.
(3+1)(3^2+1)(3^3+1)(3^4+1)...(3^36+)如何计算,请列出过程!(3+1)(3^2+1)(3^4+1)...(3^36+1)=(3-1)(3+1)(3^2+1)(3^4+1)...(3^36+1)/(3-1)=(3^2-1)(3^2+1)(3^4+1)...(3^36+1)/2=...=(3^72-1)/2...查看完整版>>
(3+1)(3^2+1)(3^3+1)(3^4+1)...(3^36+)如何计算,请列出过程!
08.
(2+1)(2^2+1)(2^4+1).......(2^16+1)+1=?原式=(2-1)(2+1)(2^2+1)(2^4+1)...(2^16+1)+1 =(2^2-1)(2^2+1)(2^4+1)...(2^16+1)+1 =(2^4-1)(2^4+1)...(2^16+1)+1 ... =(2^16-1)(2^16+1)+1 =2^32-1+1 =2^32...查看完整版>>
(2+1)(2^2+1)(2^4+1).......(2^16+1)+1=?
09.
(4+1)(4^2+1)(4^4+1)....(4^16+1)原式=1/3*(4-1)(4+1)(4^2+1)……(4^16+1) =1/3*(4^2-1)(4^2+1)....(4^16+1) =1/3*(4^32-1)...查看完整版>>
(4+1)(4^2+1)(4^4+1)....(4^16+1)
10.
(1+1\2+1\3+1\4)*(1\2+1\3+1\4+1\5)-(1+1\2+1\3+1\4+1\5)*(1\2+1\3+1\4)设1\2+1\3+1\4=A,则(1+1\2+1\3+1\4)*(1\2+1\3+1\4+1\5)-(1+1\2+1\3+1\4+1\5)*(1\2+1\3+1\4) = (1 + A)*(A + 1\5) - (1 + A + 1\5)*(A) = 1\5...查看完整版>>
(1+1\2+1\3+1\4)*(1\2+1\3+1\4+1\5)-(1+1\2+1\3+1\4+1\5)*(1\2+1\3+1\4)
免责声明:本文为网络用户发布,其观点仅代表作者个人观点,与本站无关,本站仅提供信息存储服务。文中陈述内容未经本站证实,其真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。