高一集合题,急!!
设非空集合A={x|-2<= x <= a}.B={y|y=2x+3,x属于A}。C={z|z=x^2,x属于A},当C真包含于B时,求实数a的取值范围。
(x^2是x的平方)
参考答案:B={y|-1<=y<=2a+3}
1,-2<=a<=0
C={z|a^2<=z<=4}
当C真包含于B时4<=2a+3 a>=1/2,矛盾
2,0<a<2,C={z|0<=z<=4} 4<=2a+3,a>1=/2得到1/2<=a<=2
3,a>=2,C={z|0<=z<=a^2}
当C真包含于B时a^2<=2a+3 ,-1<=a<=3,得到2<=a<=3
所以,实数a的取值范围是1/2<=a<=3