1/1*2*3+1/2*3*4+1/3*4*5+1/5*6*7……+1/98*99*100=
过程
参考答案:原式=1/2*[2/(1*2*3)+2/(2*3*4)+...+2/(98*99*100)]
=1/2*[(3-1)/(1*2*3)+(4-2)/(2*3*4)+...+(100-98)/(98*99*100)]
=1/2*[3/(1*2*3)-1/(1*2*3)+4/(2*3*4)-2/(2*3*4)+...+100/(98*99*100)-98/(98*99*100)]
=1/2*[1/(1*2)-1/(2*3)+1/(2*3)-1/(3*4)+...+1/(98*99)-1/(99*100)]
=1/2*[1/2-1/9900]
=4949/19800