如果方程(lgx)^2+(lg7+lg5)*lgx+lg7*lg5=0的两根是a、b,则a*b的值是()?
(lga)^2+(lg7+lg5)*lga+lg7*lg5=0
(lga+lg7)(lga+lg5)=0
(lgb+lg7)(lgb+lg5)=0
lga=-lg7
lgb=-lg5
或
lga=-lg5
lgb=-lg7
lga+lgb=lg(ab)=-lg35=lg(35^(-1))
所以a×b=1/35
(lga)^2+(lg7+lg5)*lga+lg7*lg5=0
(lga+lg7)(lga+lg5)=0
(lgb+lg7)(lgb+lg5)=0
lga=-lg7
lgb=-lg5
或
lga=-lg5
lgb=-lg7
lga+lgb=lg(ab)=-lg35=lg(35^(-1))
所以a×b=1/35