数学微积分
∫1/([根号2x+3]+1) dx
参考答案:根号2x+3=t
2x+3=t^2
x=(t^2-3)/2
∫1/([根号2x+3]+1) dx
=∫t/(t+1) dt
=∫1-1/(t+1) dt
=t-ln(t+1)+C
=根号(2x+3)-ln[根号(2x+3)+1]+C
∫1/([根号2x+3]+1) dx
参考答案:根号2x+3=t
2x+3=t^2
x=(t^2-3)/2
∫1/([根号2x+3]+1) dx
=∫t/(t+1) dt
=∫1-1/(t+1) dt
=t-ln(t+1)+C
=根号(2x+3)-ln[根号(2x+3)+1]+C