解决数学题:已知x2+(1/x2)-6(x+(1/x))+11=0 求x6+x4+x2+1/x6+x5+x4+1
x6就是x的6次方,以此类推
参考答案:解:
x≠0
(x+1/x)^2=x^2+(1/x)^2+2
设x+(1/x)=y,则
x^2+(1/x^2)-6[x+(1/x)]+11=0
x^2+(1/x)^2+2-6[x+(1/x)]+9=0
(x+1/x)^2-6(x+1/x)+9=0
y^2-6y+9=0
(y-3)^2=0
y=3
即x+1/x=3
x^2-3x+1=0,x^2=3x-1
x=(3±√5)/2
(x+1/x)^3=27
x^3+1/x^3+3(x+1/x)=27
x^3+1/x^3=27-3(x+1/x)=27-3*3=18
(x^6+x^4+x^2+1)/(x^6+x^5+x^4+1)
=(x^3+x+1/x+1/x^3)/(x^3+x^2+x+1/x^3)
=(x^3+1/x^3+x+1/x)/(x^3+1/x^3+x^2+x)
=(18+3)/(18+x^2+x)
=21/(18+3x-1+x)
=21/(17+4x)
=21/[17+4*(3±√5)/2]
=21/(23±2√5)
=21*(23±2√5)/509
题目出得不好,应为
(x^6+x^4+x^2+1)/(x^6+x^5+x+1)
=(x^3+x+1/x+1/x^3)/(x^3+x^2+1/x^2+1/x^3)
=(x^3+1/x^3+x+1/x)/(x^3+1/x^3+x^2+1/x^2)
=(18+3)/(18+9-2)
=21/25
总之分子分母同时÷x^3后,可以成为(x+1/x)的形式。