数学问题
关于函数的历史,发展和资料
参考答案:一、什么是函数
Excel中所提的函数其实是一些预定义的公式,它们使用一些称为参数的特定数值按特定的顺序或结构进行计算。用户可以直接用它们对某个区域内的数值进行一系列运算,如分析和处理日期值和时间值、确定贷款的支付额、确定单元格中的数据类型、计算平均值、排序显示和运算文本数据等等。例如,SUM 函数对单元格或单元格区域进行加法运算。
术语说明
什么是参数?参数可以是数字、文本、形如 TRUE 或 FALSE 的逻辑值、数组、形如 #N/A 的错误值或单元格引用。给定的参数必须能产生有效的值。参数也可以是常量、公式或其它函数。
参数不仅仅是常量、公式或函数,还可以是数组、单元格引用等:
1.数组--用于建立可产生多个结果或可对存放在行和列中的一组参数进行运算的单个公式。在 Microsoft Excel有两类数组:区域数组和常量数组。区域数组是一个矩形的单元格区域,该区域中的单元格共用一个公式;常量数组将一组给定的常量用作某个公式中的参数。
2.单元格引用--用于表示单元格在工作表所处位置的坐标值。例如,显示在第 B 列和第 3 行交叉处的单元格,其引用形式为"B3"。
3.常量--常量是直接键入到单元格或公式中的数字或文本值,或由名称所代表的数字或文本值。例如,日期 10/9/96、数字 210 和文本"Quarterly Earnings"都是常量。公式或由公式得出的数值都不是常量。
函数是否可以是多重的呢?也就是说一个函数是否可以是另一个函数的参数呢?当然可以,这就是嵌套函数的含义。所谓嵌套函数,就是指在某些情况下,您可能需要将某函数作为另一函数的参数使用。例如图1中所示的公式使用了嵌套的 AVERAGE 函数,并将结果与 50 相比较。这个公式的含义是:如果单元格F2到F5的平均值大于50,则求F2到F5的和,否则显示数值0。 数学是研究现实世界的空间形式和数量关系的.它研究的对象本来是十分具体的,但为了在比较纯粹的状况下来研究空间形式和数量关系,才不得不把客观对象的所有其它特征抛开不管,因此,数学的抽象完全舍弃了事物的质的内容,而仅仅保留了它们的量的属性,即数学抽象的目的只是数量关系和空间形式.这就决定了数学与其它自然科学的区别,也决定了数学的特殊性.
而数学的抽象有着不同的方式,弱抽象是数学抽象的方式之一,而函数概念的每次扩张都是弱抽象,函数概念的发展成为理解弱抽象的一个典型事例.
弱抽象就是逐渐减弱对象的特殊性,即舍去对象的一些特征而仅抽取某一特殊或某个属性加以概括,形成比原对象更为普遍,更为一般的对象的一种抽象方法.
以现实事物或现象为原型进行基本概念的抽象就是一种弱抽象,它舍弃了事物或现象的一些物理或化学特征而仅抽取量性特征.
函数的概念最早产生于运动的研究.如伽利略是用文字语言来表述这些函数关系的.“从静止状态开始以定常加速度下降的物体,其经过的距离与所用时间的平方成正比”;“沿着同高度但不同坡度的倾斜平板下滑的物体,其下滑的时间与平板的长度成正比”;显然,只需引进适当的符号,上述的函数关系就可以明确的用数学形式表述: ; …以这些具体的函数为原型,17世纪的一些数学家通过弱抽象获得了如下的函数概念:
“函数是这样一个量,它是从一些其它的量通过一系列代数运算而得到的.”
上述定义显然过于狭窄了,因为它事实上仅适用于代数函数的范围.因此,在其后的发展中,函数概念得到了进一步的扩展.随着数学研究的深入,人们逐渐接触到了一些超越函数,如对数函数,指数函数三角函数等,尽管这些函数已经超出了代数函数的范围,但是在一些数学家看来,两者区别仅仅在于超越函数重复代数函数的那些运算无限多次,从而人们又通过弱抽象提出了如下的函数概念:
“函数是指由一个变量与一些常量,通过任何方式(有限的或无限的)形成的解析表达式.”
这一由欧拉给出的定义尽管仍然过于狭窄,在18世纪却曾长期占统治地位.
19世纪初,函数概念再次得到了扩展,函数的概念开始摆脱“解析表达式”,另外狄里克雷更提出了如下的函数概念:
“如果对于给定区间上的每一个x值有唯一的一个y值同它对应,那么,y就是x的一个函数.”
最后,如果用任意的数学对象去取代具体的数量,并采用集合论的语言,则可以获得更为一般的“映射”概念:
如果在两个集合的元素之间存在有确定的对应关系,就称为是一个映射.