内存是什么
在计算机的组成结构中,有一个很重要的部分,就是存储器。存储器是用来存储程序和数据的部件,对于计算机来说,有了存储器,才有记忆功能,才能保证正常工作。存储器的种类很多,按其用途可分为主存储器和辅助存储器,主存储器又称内存储器(简称内存).内存在电脑中起着举足轻重的作用。内存一般采用半导体存储单元,包括随机存储器(RAM),只读存储器(ROM),以及高速缓存(CACHE)。只不过因为RAM是其中最重要的存储器。S(SYSNECRONOUS)DRAM 同步动态随机存取存储器:SDRAM为168脚,这是目前PENTIUM及以上机型使用的内存。SDRAM将CPU与RAM通过一个相同的时钟锁在一起,使CPU和RAM能够共享一个时钟周期,以相同的速度同步工作,每一个时钟脉冲的上升沿便开始传递数据,速度比EDO内存提高50%。DDR(DOUBLE DATA RAGE)RAM :SDRAM的更新换代产品,他允许在时钟脉冲的上升沿和下降沿传输数据,这样不需要提高时钟的频率就能加倍提高SDRAM的速度。
●内存
内存就是存储程序以及数据的地方,比如当我们在使用WPS处理文稿时,当你在键盘上敲入字符时,它就被存入内存中,当你选择存盘时,内存中的数据才会被存入硬(磁)盘。在进一步理解它之前,还应认识一下它的物理概念。
●只读存储器(ROM)
ROM表示只读存储器(Read Only Memory),在制造ROM的时候,信息(数据或程序)就被存入并永久保存。这些信息只能读出,一般不能写入,即使机器掉电,这些数据也不会丢失。ROM一般用于存放计算机的基本程序和数据,如BIOS ROM。其物理外形一般是双列直插式(DIP)的集成块。
●随机存储器(RAM)
随机存储器(Random Access Memory)表示既可以从中读取数据,也可以写入数据。当机器电源关闭时,存于其中的数据就会丢失。我们通常购买或升级的内存条就是用作电脑的内存,内存条(SIMM)就是将RAM集成块集中在一起的一小块电路板,它插在计算机中的内存插槽上,以减少RAM集成块占用的空间。目前市场上常见的内存条有128M/条、256M/条、512M/条等。
●高速缓冲存储器(Cache)
Cache也是我们经常遇到的概念,它位于CPU与内存之间,是一个读写速度比内存更快的存储器。当CPU向内存中写入或读出数据时,这个数据也被存储进高速缓冲存储器中。当CPU再次需要这些数据时,CPU就从高速缓冲存储器读取数据,而不是访问较慢的内存,当然,如需要的数据在Cache中没有,CPU会再去读取内存中的数据。
当你理解了上述概念后,也许你会问,内存就是内存,为什么又会出现各种内存名词,这到底又是怎么回事呢?
在回答这个问题之前,我们再来看看下面这一段。
物理存储器和地址空间
物理存储器和存储地址空间是两个不同的概念。但是由于这两者有十分密切的关系,而且两者都用B、KB、MB、GB来度量其容量大小,因此容易产生认识上的混淆。初学者弄清这两个不同的概念,有助于进一步认识内存储器和用好内存储器。
物理存储器是指实际存在的具体存储器芯片。如主板上装插的内存条和装载有系统的BIOS的ROM芯片,显示卡上的显示RAM芯片和装载显示BIOS的ROM芯片,以及各种适配卡上的RAM芯片和ROM芯片都是物理存储器。
存储地址空间是指对存储器编码(编码地址)的范围。所谓编码就是对每一个物理存储单元(一个字节)分配一个号码,通常叫作“编址”。分配一个号码给一个存储单元的目的是为了便于找到它,完成数据的读写,这就是所谓的“寻址”(所以,有人也把地址空间称为寻址空间)。
地址空间的大小和物理存储器的大小并不一定相等。举个例子来说明这个问题:某层楼共有17个房间,其编号为801~817。这17个房间是物理的,而其地址空间采用了三位编码,其范围是800~899共100个地址,可见地址空间是大于实际房间数量的。
对于386以上档次的微机,其地址总线为32位,因此地址空间可达232即4GB。但实际上我们所配置的物理存储器通常只有1MB、2MB、4MB、8MB、16MB、32MB等,远小于地址空间所允许的范围。
好了,现在可以解释为什么会产生诸如:常规内存、保留内存、上位内存、高端内存、扩充内存和扩展内存等不同内存类型。
各种内存概念
这里需要明确的是,我们讨论的不同内存的概念是建立在寻址空间上的。
IBM推出的第一台PC机采用的CPU是8088芯片,它只有20根地址线,也就是说,它的地址空间是1MB。
PC机的设计师将1MB中的低端640KB用作RAM,供DOS及应用程序使用,高端的384KB则保留给ROM、视频适配卡等系统使用。从此,这个界限便被确定了下来并且沿用至今。低端的640KB就被称为常规内存即PC机的基本RAM区。保留内存中的低128KB是显示缓冲区,高64KB是系统BIOS(基本输入/输出系统)空间,其余192KB空间留用。从对应的物理存储器来看,基本内存区只使用了512KB芯片,占用0000至80000这512KB地址。显示内存区虽有128KB空间,但对单色显示器(MDA卡)只需4KB就足够了,因此只安装4KB的物理存储器芯片,占用了B0000至B10000这4KB的空间,如果使用彩色显示器(CGA卡)需要安装16KB的物理存储器,占用B8000至BC000这16KB的空间,可见实际使用的地址范围都小于允许使用的地址空间。
在当时(1980年末至1981年初)这么“大”容量的内存对PC机使用者来说似乎已经足够了,但是随着程序的不断增大,图象和声音的不断丰富,以及能访问更大内存空间的新型CPU相继出现,最初的PC机和MS-DOS设计的局限性变得越来越明显。
1.什么是扩充内存?
EMS工作原理
到1984年,即286被普遍接受不久,人们越来越认识到640KB的限制已成为大型程序的障碍,这时,Intel和Lotus,这两家硬、软件的杰出代表,联手制定了一个由硬件和软件相结合的方案,此方法使所有PC机存取640KB以上RAM成为可能。而Microsoft刚推出Windows不久,对内存空间的要求也很高,因此它也及时加入了该行列。
在1985年初,Lotus、Intel和Microsoft三家共同定义了LIM-EMS,即扩充内存规范,通常称EMS为扩充内存。当时,EMS需要一个安装在I/O槽口的内存扩充卡和一个称为EMS的扩充内存管理程序方可使用。但是I/O插槽的地址线只有24位(ISA总线),这对于386以上档次的32位机是不能适应的。所以,现在已很少使用内存扩充卡。现在微机中的扩充内存通常是用软件如DOS中的EMM386把扩展内存模拟或扩充内存来使用。所以,扩充内存和扩展内存的区别并不在于其物理存储器的位置,而在于使用什么方法来读写它。下面将作进一步介绍。
前面已经说过扩充存储器也可以由扩展存储器模拟转换而成。EMS的原理和XMS不同,它采用了页帧方式。页帧是在1MB空间中指定一块64KB空间(通常在保留内存区内,但其物理存储器来自扩展存储器),分为4页,每页16KB。EMS存储器也按16KB分页,每次可交换4页内容,以此方式可访问全部EMS存储器。符合EMS的驱动程序很多,常用的有EMM386.EXE、QEMM、TurboEMS、386MAX等。DOS和Windows中都提供了EMM386.EXE。
2.什么是扩展内存?
我们知道,286有24位地址线,它可寻址16MB的地址空间,而386有32位地址线,它可寻址高达4GB的地址空间,为了区别起见,我们把1MB以上的地址空间称为扩展内存XMS(eXtend memory)。
在386以上档次的微机中,有两种存储器工作方式,一种称为实地址方式或实方式,另一种称为保护方式。在实方式下,物理地址仍使用20位,所以最大寻址空间为1MB,以便与8086兼容。保护方式采用32位物理地址,寻址范围可达4GB。DOS系统在实方式下工作,它管理的内存空间仍为1MB,因此它不能直接使用扩展存储器。为此,Lotus、Intel、AST及Microsoft公司建立了MS-DOS下扩展内存的使用标准,即扩展内存规范XMS。我们常在Config.sys文件中看到的Himem.sys就是管理扩展内存的驱动程序。
扩展内存管理规范的出现迟于扩充内存管理规范。
3.什么是高端内存区?
在实方式下,内存单元的地址可记为:
段地址:段内偏移
通常用十六进制写为XXXX:XXXX。实际的物理地址由段地址左移4位再和段内偏移相加而成。若地址各位均为1时,即为FFFF:FFFF。其实际物理地址为:FFF0+FFFF=10FFEF,约为1088KB(少16字节),这已超过1MB范围进入扩展内存了。这个进入扩展内存的区域约为64KB,是1MB以上空间的第一个64KB。我们把它称为高端内存区HMA(High Memory Area)。HMA的物理存储器是由扩展存储器取得的。因此要使用HMA,必须要有物理的扩展存储器存在。此外HMA的建立和使用还需要XMS驱动程序HIMEM.SYS的支持,因此只有装入了HIMEM.SYS之后才能使用HMA。
4.什么是上位内存?
为了解释上位内存的概念,我们还得回过头看看保留内存区。保留内存区是指640KB~1024KB(共384KB)区域。这部分区域在PC诞生之初就明确是保留给系统使用的,用户程序无法插足。但这部分空间并没有充分使用,因此大家都想对剩余的部分打主意,分一块地址空间(注意:是地址空间,而不是物理存储器)来使用。于是就得到了又一块内存区域UMB。
UMB(Upper Memory Blocks)称为上位内存或上位内存块。它是由挤占保留内存中剩余未用的空间而产生的,它的物理存储器仍然取自物理的扩展存储器,它的管理驱动程序是EMS驱动程序。
5.什么是SHADOW(影子)内存?
对于细心的读者,可能还会发现一个问题:即是对于装有1MB或1MB以上物理存储器的机器,其640KB~1024KB这部分物理存储器如何使用的问题。由于这部分地址空间已分配为系统使用,所以不能再重复使用。为了利用这部分物理存储器,在某些386系统中,提供了一个重定位功能,即把这部分物理存储器的地址重定位为1024KB~1408KB。这样,这部分物理存储器就变成了扩展存储器,当然可以使用了。但这种重定位功能在当今高档机器中不再使用,而把这部分物理存储器保留作为Shadow存储器。Shadow存储器可以占据的地址空间与对应的ROM是相同的。Shadow由RAM组成,其速度大大高于ROM。当把ROM中的内容(各种BIOS程序)装入相同地址的Shadow RAM中,就可以从RAM中访问BIOS,而不必再访问ROM。这样将大大提高系统性能。因此在设置CMOS参数时,应将相应的Shadow区设为允许使用(Enabled)。
6、什么是奇/偶校验?
奇/偶校验(ECC)是数据传送时采用的一种校正数据错误的一种方式,分为奇校验和偶校验两种。
如果是采用奇校验,在传送每一个字节的时候另外附加一位作为校验位,当实际数据中“1”的个数为偶数的时候,这个校验位就是“1”,否则这个校验位就是“0”,这样就可以保证传送数据满足奇校验的要求。在接收方收到数据时,将按照奇校验的要求检测数据中“1”的个数,如果是奇数,表示传送正确,否则表示传送错误。
同理偶校验的过程和奇校验的过程一样,只是检测数据中“1”的个数为偶数。
总 结
经过上面分析,内存储器的划分可归纳如下:
●基本内存 占据0~640KB地址空间。
●保留内存 占据640KB~1024KB地址空间。分配给显示缓冲存储器、各适配卡上的ROM和系统ROM BIOS,剩余空间可作上位内存UMB。UMB的物理存储器取自物理扩展存储器。此范围的物理RAM可作为Shadow RAM使用。
●上位内存(UMB) 利用保留内存中未分配使用的地址空间建立,其物理存储器由物理扩展存储器取得。UMB由EMS管理,其大小可由EMS驱动程序设定。
●高端内存(HMA) 扩展内存中的第一个64KB区域(1024KB~1088KB)。由HIMEM.SYS建立和管理。
●XMS内存 符合XMS规范管理的扩展内存区。其驱动程序为HIMEM.SYS。
●EMS内存 符合EMS规范管理的扩充内存区。其驱动程序为EMM386.EXE等。
开放分类:
硬件、电脑
参考资料:
1.王朝知道
贡献者:
ben_kasim、lewuyang、战狐、胡呵、luinsoft
回答者:Apexcc - 经理 四级 8-1 13:12
什么是内存呢?在计算机的组成结构中,有一个很重要的部分,就是存储器。存储器是用来存储程序和数据的部件,对于计算机来说,有了存储器,才有记忆功能,才能保证正常工作。存储器的种类很多,按其用途可分为主存储器和辅助存储器,主存储器又称内存储器(简称内存),辅助存储器又称外存储器(简称外存)。外存通常是磁性介质或光盘,像硬盘,软盘,磁带,CD等,能长期保存信息,并且不依赖于电来保存信息,但是由机械部件带动,速度与CPU相比就显得慢的多。内存指的就是主板上的存储部件,是CPU直接与之沟通,并用其存储数据的部件,存放当前正在使用的(即执行中)的数据和程序,它的物理实质就是一组或多组具备数据输入输出和数据存储功能的集成电路,内存只用于暂时存放程序和数据,一旦关闭电源或发生断电,其中的程序和数据就会丢失。
既然内存是用来存放当前正在使用的(即执行中)的数据和程序,那么它是怎么工作的呢?我们平常所提到的计算机的内存指的是动态内存(即DRAM),动态内存中所谓的“动态”,指的是当我们将数据写入DRAM后,经过一段时间,数据会丢失,因此需要一个额外设电路进行内存刷新操作。具体的工作过程是这样的:一个DRAM的存储单元存储的是0还是1取决于电容是否有电荷,有电荷代表1,无电荷代表0。但时间一长,代表1的电容会放电,代表0的电容会吸收电荷,这就是数据丢失的原因;刷新操作定期对电容进行检查,若电量大于满电量的1/2,则认为其代表1,并把电容充满电;若电量小于1/2,则认为其代表0,并把电容放电,藉此来保持数据的连续性。
从一有计算机开始,就有内存。内存发展到今天也经历了很多次的技术改进,从最早的DRAM一直到FPMDRAM、EDODRAM、SDRAM等,内存的速度一直在提高且容量也在不断的增加。今天,服务器主要使用的是什么样的内存呢?目前,IA架构的服务器普遍使用的是REGISTEREDECCSDRAM,下一期我们将详细介绍这一全新的内存技术及它给服务器带来的独特的技术优势。