一道初二数学题
已知x=(√3)+2,y=(√3)-2,求[(x^2)-(y^2)]/[(x^2)y+(xy^2)]的值.
参考答案:解:可知
xy=3-4=-1
x-y=4
所以
[(x^2)-(y^2)]/[(x^2)y+(xy^2)]
=(x+y)(x-y)/[xy(x+y)]
=(x-y)/xy
=4/(-1)
=-4
已知x=(√3)+2,y=(√3)-2,求[(x^2)-(y^2)]/[(x^2)y+(xy^2)]的值.
参考答案:解:可知
xy=3-4=-1
x-y=4
所以
[(x^2)-(y^2)]/[(x^2)y+(xy^2)]
=(x+y)(x-y)/[xy(x+y)]
=(x-y)/xy
=4/(-1)
=-4