1/1x3 + 1/3x5 + 1/5x7+......+......+1/99x101
简便算法,写出过程
参考答案:1/1x3 =1/2(1-1/3)
1/3x5=1/2(1/3-1/5)
........................
1/99x101=1/2(1/99-1/101)
所以
原式=1/2(1-1/3+1/3-1/5+1/5-1/7.....+1/99-1/101)
=1/2(1-1/101)
=1/2(100/101)
=50/101
简便算法,写出过程
参考答案:1/1x3 =1/2(1-1/3)
1/3x5=1/2(1/3-1/5)
........................
1/99x101=1/2(1/99-1/101)
所以
原式=1/2(1-1/3+1/3-1/5+1/5-1/7.....+1/99-1/101)
=1/2(1-1/101)
=1/2(100/101)
=50/101