数列{an}中相邻两项an.an+1是方程x^2+3nx+bn=0的两根,已知a10=—17,求b51?
怎么解?谢谢`
参考答案:an,an+1是方程x2+3nx+bn=0的两根
=>an*an+1=bn, an+an+1=-3n;
即b51=a52*a51;
an+an+1=-3n=>(an+1)+3/2(n+1)-3/4=-(an+(3/2)n-3/4);
so:[(an+1)+3/2(n+1)-3/4]/(an+(3/2)n-3/4)=-1
so:{an+(3/2)n-3/4}是公比为-1的等比数列;
so:
a52+(3/2)*52-3/4=[a10+(3/2)*10-3/4]*(-1)^(52-10);
a51+(3/2)*51-3/4=[a10+(3/2)*10-3/4]*(-1)^(51-10);
解得a52,a51带入b51=a52*a51即可解的