数学问题!!!
项数为奇数的等差数列,奇数项之和为44,偶数项之和为33,则该数列的中间项是_________.
参考答案:设数列共有2n+1项,首项为a1,公差为d,其奇数项有n+1项,偶数项有n项,中间一项是第n+1项,则有
奇数项之和S1=(n+1)[a1+a1+2nd]/2=(n+1)(a1+nd)
偶数项之和S2=n[a1+d+(a1+d)+2(n-1)d]/2=n(a1+nd)
S1-S2=a1+nd=a(n+1)=44-33=11
所以中间项是11
项数为奇数的等差数列,奇数项之和为44,偶数项之和为33,则该数列的中间项是_________.
参考答案:设数列共有2n+1项,首项为a1,公差为d,其奇数项有n+1项,偶数项有n项,中间一项是第n+1项,则有
奇数项之和S1=(n+1)[a1+a1+2nd]/2=(n+1)(a1+nd)
偶数项之和S2=n[a1+d+(a1+d)+2(n-1)d]/2=n(a1+nd)
S1-S2=a1+nd=a(n+1)=44-33=11
所以中间项是11