求1/[(a^2-x^2)^5/2]dx 的不定积分?
令x=asint
原式=1/[(a^2cost^2)^5/2]dsint=1/(a^5cost^4)dt
=(sint^2+cost^2)/(a^5cost^4)dt
=sint^2/(a^5cost^4)dt+1/(a^5cost^2)dt
=tant^2/a^5dtant+1/a^5dtant
=tant^3/3a^5+tant/a^5+C
最后再将t=arcsin x/a 代回即可
令x=asint
原式=1/[(a^2cost^2)^5/2]dsint=1/(a^5cost^4)dt
=(sint^2+cost^2)/(a^5cost^4)dt
=sint^2/(a^5cost^4)dt+1/(a^5cost^2)dt
=tant^2/a^5dtant+1/a^5dtant
=tant^3/3a^5+tant/a^5+C
最后再将t=arcsin x/a 代回即可