加速度的变化率有物理意义吗?
一个困惑我19年的问题
参考答案:议论纷纷、众说纷纭。我个人认为有一定的物理意义的。再高阶的导数都有一定意思,只是很少用得上罢了。
位移对时间t的一阶导数表示质点运动的速度,位移对t的二阶导数表示质点运动的动的加速度,那么位移对时间t的三阶导数以及更高阶的导数有物理意义吗?
远在三百多年前,微积分和经典力学刚刚诞生的牛顿时代,人们就已经知道一阶导数和二阶导数的物理意义和几何意义。
在力学中,位移对时间t的一阶导数表示质点运动速度的大小和方向;位移对时间t的二阶导数表示质点运动加速度的大小和方向.这样,依此类推,人们自然要问位移对时间t的三阶导数以及位移对时间t的更高阶导数有没有物理意义呢 ?
近年来,我国有人著文谈到这个问题.他认为位移对时间t的三阶导数等有物理意义,并定名为"急动度".他认为急动度是加速度对时间t的变化率,并且人对这个量还能有感觉,在有些运动中是应该考虑这个物理量的.不久,又有人著文反对这种观点,他们认为没有物理意义.他们的主要根据是牛顿力学已经历了三百多年形成了完整的体系,直到目前为止没有任何实验要求讨论这个物理量,因此,他们认为位移r对时间t的三阶导数乃至更高的导数都是没有物理意义的.(据笔者所知,关于这一问题,目前仅处于学术争论阶段,至今尚无定论)
在教学过程中,有的同学也提出过这个问题,可见这个问题有一定的普遍性,因此在这里简要地介绍了有关这个问题的争论情况.我们倾向于认为位移对时间t的三阶导数乃至更高阶的导数都可能有物理意义,只是目前我们尚没有认识到它们的物理意义是什么罢了.