若2^x=3^y=5^z,x,y.z为正数,则2x,3y,5z从小到大依次为
设2^x=3^y=5^z=t
则
x=lnt/ln2
y=lnt/ln3
z=lnt/ln5
所以
2x=2lnt/ln2
3y=3lnt/ln3
5z=5lnt/ln5
2/ln2=2.8854
3/ln3=2.7307
5/ln5=3.1067
所以
5z>2x>3y
设2^x=3^y=5^z=t
则
x=lnt/ln2
y=lnt/ln3
z=lnt/ln5
所以
2x=2lnt/ln2
3y=3lnt/ln3
5z=5lnt/ln5
2/ln2=2.8854
3/ln3=2.7307
5/ln5=3.1067
所以
5z>2x>3y