气化炉制作技术
气化炉原理是什么,那位能不能说一下怎样制作?
参考答案:已有的反火型煤气发生炉和城市垃圾气化炉,其中反火型煤气发生炉的气化原理:炉在运行时,炉内所需气化剂是从上炉口入炉内,与炉内煤料顺方向向下气化反应,制气工艺简便,操作安全卫生,但由于进人炉内的煤料是先经炉内高温氧化处理后,再被还原成煤气的炉内净化和气化同时进行,其环境效益较为理想。其存在的缺点:反人型煤气发生炉的排渣系统由于受转动齿轮水封圈强度的限制而无法向大直径炉型方面发展,对在使用型煤(碳化煤球)时炉座水封中的沉淀物和其它固体物质容易阻塞排渲绞龙。而城市垃圾气化炉由于排灌系统的排渣口是设置在炉中心部位,在排灰渣时会影响炉内灰渣下降的均匀性,也影响炉内产出可燃气体的质量,又由于抽吸煤气口设置在炉内周边,当用多根小管径的管口抽吸炉内煤气时,有灰渣阻塞的现象。
本技术的目的在于针对上述存在的缺陷,提供一种由炉下部中心部位设置一根转动轴来带动炉棚上面的排灰刀和炉座下部的刮灰板所组成新的排渣系统的再生能源气化炉,它可用工业和农业生产中的废弃物及城市生活垃圾制成气化燃料.来制取可供城市居民烧用洁净的城市煤气。
本技术的技术解决方案:有炉体支撑柱18;在炉顶2上设有上炉口1,炉顶2下方是上炉堂3,上炉堂3内有氧化层4,上炉堂3H侧是炉内耐火内衬5,炉内耐火内村5的外围设护体夹套6,在上炉堂3的底部设炉内灰渣圈7,在炉内灰渣圈7的下方设平面炉栅12、炉栅托撑8,炉座17连接炉座炉腔9、炉座清灰孔10,在炉下中心位置设置转动轴14,转动轴14的上端连接排灰刀13,下端连接刮灰板16,炉座17内设排灰管11,炉体夹套6的下部设抽吸炉内再生燃气管口15。
它的气化方法:(1)将工业或农业生产中的废弃物和城市生活垃圾分选;(2)除去其中不可燃的无机物;(3)将各种有机可燃物经机械加工成气化燃料;(4)气化燃料加人炉内,经1200度以上高温氧化处理后生成洁净的高温二氧化碳再被继续吸人下面的还原层中,被还原成一氧化碳(C0)和氢(H2)及甲烷(CH4)等可燃气体。
本技术的优点:
1.由炉下部中心部位设置的转动轴来代替原大齿轮转动水封圈的复杂排灰渣系统,不但简化炉内排渣转动结构,而又能节省大量的制作材料,同时还可使炉型向大直径规格方面发展。
2.将工业和农业生产中的废弃物和城市生活垃圾转化成洁净的城市煤气,
供居民烧用,节约能源,并保护了环境,它有着无限广阔的市场前景和较高经济效益的推广价值。
附图是本技术的结构示意图:
图1中的1为上炉口、2为炉顶、3为上炉膛、4为氧化层、5为炉内耐火内衬、6为炉体夹套、7为炉内灰渣圈、8为炉栅托撑、9为炉座炉腔、10为炉座清灰孔、11为炉下排灰管、12为平面炉栅、13为排灰刀、14为炉下中心转动轴、15为抽吸炉内再生燃气管口、16为炉下刮灰板、17为炉座、18为炉体支撑柱。
下面进一步描述本技术的技术原理和技术解决方案:
再生能源气化炉是在反火型煤气发生炉的气化原理的基础上的改进。反火型煤气发生炉的气化原理是靠炉外抽吸风机的作用下使炉内产生微负压状态,当炉在运行时,炉内所需气化剂是从炉口吸入炉内自上而下,经干留层、氧化层、还原层、灰渣层与炉内煤料发生剧烈的氧化反应后生成高温二氧化碳,而后再被还原成可燃气体。然而,本技术是将工业和农业生产中的废弃物及城市生活垃圾用机械加工成气化燃料,而后进人炉内气化反应。炉内所需气化剂(空气、蒸气、氧气、富氧)是从上炉口或炉上部进气管吸人炉内上部炉腔与炉内在气化燃料干馏时所释放出来的各种有害可燃物质混合后同时被吸入下面的氧化层中,经炉内1200度以上高温的氧化处理后,生成洁净的高温二氧化碳继续被吸人下面的还原层中被还原成再生燃气。
再生能源气化炉的具体结构是:包括用各种可燃废弃物和生活垃圾制成气化燃料的加人系统,炉体和排灰渣及抽吸炉内煤气系统(或鼓风系统),气化剂的输入管道和产生再生燃气后的输出管道系统。炉体内壁有耐火内衬,气化剂输入管道开口于气化炉上部或顶部,抽吸炉内煤气系统连接于炉内煤气输出管道后,通过抽吸煤气系统使炉内产生微负压,将气化剂吸人炉内自上而下的气化反应,并将炉内气化产生的再生燃气从炉体下部输出,抽气系统和向炉内鼓风系统可同时使用,排灰渣系统与设置在炉中心转动轴相连,由上部排灰刀和下部刮灰板组成排灰(渣)系统,排灰(渣)管设置在炉座下部,由转动轴带动上部的排灰刀和下部的刮灰板将炉内灰渣排人排灰(渣)管内排出炉外。
实施例1:
选炉的直径2.4米,高7.2米;先将工业和农业生产中的废弃物及生活垃圾分选,除去其中不可燃的无机物,如废金属(铜、铁等其它金属)和碎玻璃、碎砖石块等杂物后,再将其可燃部分粉碎,并加入占其总重量30%的煤粉,而后用机械挤压成气化燃料加人反火型再生燃气发生炉内,经炉内1200度以上高温氧化反应后生成高温二氧化碳,再被继续吸入下面的还原层中被还原成一氧化碳(CO)和氢(H2)及甲烷等可燃气体,每小时耗用废弃物和垃圾制成的气化燃料500Kg,可产生再生燃气1000m3,再生燃气热值为5兆焦/m3,按用户需要可外增热到需用燃气热值的标准。也可选用不同性质的气化剂氧或富氧来制取不同热值的再生燃气。
实施例2:
选炉直径3米,高9米,先将工业和农业生产中的废弃物及城市生活垃圾分选,除去其中不可燃的无机物,如废金属(铜、铁等其它金属和碎玻璃,碎砖石块等杂物,再将其中可燃料部分粉碎,并加人占其总重量40%的煤粉,而后用机械挤压成气化燃料加人反人型再生燃气发生炉内,经炉内1200℃以上高温氧化反应后生成高温二氧化碳,再被继续吸人下面的还原层中,被还原一氧化碳(C0)和氢(H2)及甲烷(CH4)等可燃气体,每小时耗用废弃物和垃圾制成的气化燃料1000Kg,可产再生燃气2000m3,再生燃气热值为6兆焦/M3,按用户需要可外增热到需用燃气热值的标准。也可选用不同性质的气化剂(氧或富氧)来制取不同热值的再生燃气。