一道数学题,谢谢!
函数f(x)当>0有意义,且满足条件f(2)=1,f(xy)=f(x)+f(y)
f(x)是增函数。若f(3)+f(4-8x)>2,求x的取值范围
参考答案:f(3)+f(4-8x)=f(3)+f(4)+f(1-2x) 而f(4)=f(2)+f(2)=2
所以f(3)+f(1-2x)>0
f(3)>+f(1-2x) 增函数
则 3>1-2x>0
解得 -1>x>1/2
所以区间(-1,1/2)
函数f(x)当>0有意义,且满足条件f(2)=1,f(xy)=f(x)+f(y)
f(x)是增函数。若f(3)+f(4-8x)>2,求x的取值范围
参考答案:f(3)+f(4-8x)=f(3)+f(4)+f(1-2x) 而f(4)=f(2)+f(2)=2
所以f(3)+f(1-2x)>0
f(3)>+f(1-2x) 增函数
则 3>1-2x>0
解得 -1>x>1/2
所以区间(-1,1/2)