求助:数学高手
计算,请写明详细步骤
(x^2+yz)÷[x^2+(y-z)x-yz]+(y^2+xz)÷[y^2+(z+x)y+zx]+(z^2+xy)÷[z^2-(x-y)z-xy]
参考答案:符号我不会打,自己明白就行了.
=(x2+yz)/(x-z)(x+y)+(y2-xz)/(y+x)(y+z)+(z2+xy)/(z-x)(z+y)
=(x2+yz)(y+z)/(x-z)(x+y)(y+z)+(y2-xz)(x-z)/(y+x)(y+z)(x-z)+(z2+xy)(x+y)/(z-x)(z+y)(x+y)
=(x2+yz)(y+z)/(x-z)(x+y)(y+z)+(y2-xz)(x-z)/(y+x)(y+z)(x-z)-(z2+xy)(x+y)/(x-z)(z+y)(x+y)
=(x2+yz)(y+z)+(y2-xz)(x-z)-(z2+xy)(x+y)/(x-z)(x+y)(y+z)
=x2y+y2z+x2z+z2y+y2x-x3-y2z+x2z-z2x-x2y-z2y-y2x/(x-z)(x+y)(y+z)
=2*x2z-x3-z2x/(x-z)(x+y)(y+z)
=-x(z-x)2/(x-z)(x+y)(y+z)
=x2-zx/xy+xz+y2+yz
我做任何题没有检查的习惯,如果最后答案错了很有可能,但是基本思路是正确的,你按照我的思路肯定能得到正确答案的.